
13. Pythagoras' Theorem

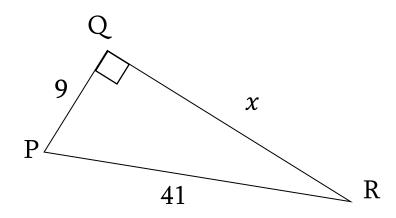
Practice Set 48

1. In the figures below, find the value of 'x'.

Solution: In Δ LMN, by Pythagoras' theorem.

$$[l(LN)]^{2} = [l(LM)]^{2} + [l(MN)]^{2}$$

$$\therefore x^{2} = (7)^{2} + (24)^{2}$$


$$= 49 + 576$$

$$= 625$$

$$\therefore x = \sqrt{625} = 25$$

 \therefore The value of x is 25.

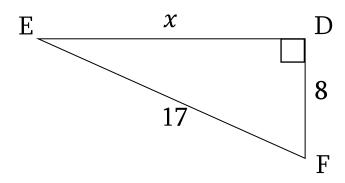
(ii)

Solution: In Δ PQR, by the Pythagoras' theorem:

$$[l(PR)]^2 = [l(PQ)]^2 + [l(QR)]^2$$

$$\therefore$$
 (41)² = (9)² + (χ)²

$$\therefore (x)^2 = (41)^2 - (9)^2$$


$$\therefore x^2 = 1681 - 81$$

$$\therefore x = \sqrt{1600}$$

$$\therefore x = 40$$

 \therefore The value of x is 40.

(iii)

Solution: In Δ EDF, by the Pythagoras' theorem:

$$[l(EF)]^2 = [l(DE)]^2 + [l(DF)]^2$$

$$\therefore (17)^2 = (x)^2 + (8)^2$$

$$\therefore x^2 = (17)^2 + (8)^2$$

$$= 289 - 64$$

$$\therefore x = \sqrt{225} = 15$$

 \therefore The value of x is 15.

2. In the right-angled $\triangle PQR$, $\angle P = 90^{\circ}$. If l (PQ) = 24 cm and l (PR) = 10 cm, find the length of seg QR.

Solution:

In
$$\triangle PQR$$
, $\angle P = 90^{\circ}$

∴ seg QR is the hypotenuse

$$l(PQ) = 24 \text{ cm}, l(PR) = 10 \text{ cm}$$

By the Pythagoras' theorem

$$[l(QR)]^2 = [l(PQ)]^2 + [l(PR)]^2$$

$$[l(QR)]^2 = (24)^2 + (10)^2$$

$$\therefore [l(QR)]^2 = 576 + 100$$

$$\therefore [l(QR)]^2 = 676$$

$$\therefore l(QR) = \sqrt{676} = 26$$

∴ The length of seg QR is 26 cm.

3. In the right-angled \triangle LMN, \angle M = 90°. If l(LM) = 12 cm and l(LN) = 20 cm, find the length of seg MN.

Solution:

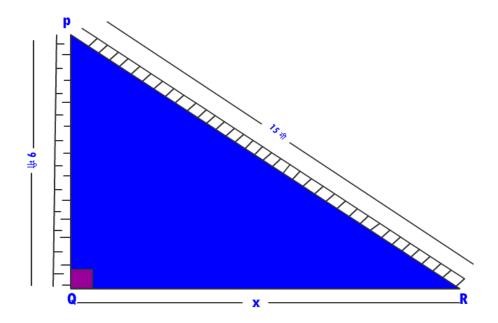
$$\Delta$$
PQR, \angle M = 90°

∴ seg LN is the hypotenuse.

By the Pythagoras' theorem

$$[l(LN)]^{2} = [l(LM)]^{2} + [l(MN)]^{2}$$

$$\therefore (20)^{2} = (12)^{2} + [l(MN)]^{2}$$


$$\therefore [l(MN)]^{2} = (20)^{2} - (12)^{2}$$

$$= 400 - 144$$

$$= 256$$

- $\therefore [l(MN)] = \sqrt{256} = 16$
- ∴ The length of seg MN is 16 cm.

4. The top of a ladder of length 15 m reaches a window 9 m above the ground. What is the distance between the base of the wall and that of the ladder?

Solution: Suppose PQ be the wall and PR, the ladder.

P is the window.

$$l(PQ) = 9m$$
, $l(PR) = 15$ m and $l(QR) = x$ m

In \triangle PQR,

By Pythagoras' theorem,

$$[l(PR)]^2 = [l(PQ)]^2 + [l(QR)]^2$$

$$\therefore (15)^2 = (9)^2 + (x)^2$$

$$\therefore x^2 = (15)^2 - (9)^2$$

$$= 225 - 81$$

$$= 144$$

$$\therefore x = \sqrt{144} = 12$$

$$\therefore l(QR) = 12 \text{ m}$$

... The distance between the foot of the ladder and the base of the wall is 12 m.

Practice Set 49

1. Find the Pythagorean triplets from among the following sets of numbers.

Solution:

$$(3)^2 = 9$$
, $(4)^2 = 16$, $(5)^2 = 25$

$$\therefore 9 + 16 = 25$$

$$\therefore$$
 (3)² + (4)² = (5)²

 \therefore 3, 4, 5 is a Pythagorean triplet.

(ii) 2, 4, 5

Solution:

2, 4, 5

$$(2)^2 = 4$$
, $(4)^2 = 16$, $(5)^2 = 25$

$$\therefore 4 + 16 = 20 \neq 25$$

$$\therefore (2)^2 + (4)^2 \neq (5)^2$$

∴ 2, 4, 5 is not a Pythagorean triplet.

(iii) 4, 5, 6

Solution:

4, 5, 6

$$(4)^2=16, (5)^2=25, (6)^2=36$$

$$\therefore (4)^2 + (5)^2 \neq (6)^2$$

Ans. 4,5,6 is not a Pythagorean triplet.

(iv) 2, 6, 7

Solution:

2,6,7

$$(2)^2 = 4$$
, $(6)^2 = 36$, $(7)^2 = 49$

$$\therefore 4 + 36 = 40 \neq 49$$

$$\therefore (2)^2 + (6)^2 \neq (7)^2$$

∴ 2, 6, 7 is not a Pythagorean triplet.

(v) 9, 40, 41

Solution:

9, 40, 41

$$(9)^2 = 81, (40)^2 = 1600, (41)^2 = 1681$$

$$\therefore (9)^2 + (40)^2 = (41)^2$$

∴ 9, 40, 41 is a Pythagorean triplet.

(iv) 4, 7, 8

Solution:

4, 7, 8

$$(4)^2 = 16, (7)^2 = 49, (8)^2 = 64$$

$$\therefore 16 + 49 = 65 \neq 64$$

$$\therefore (4)^2 + (7)^2 \neq (8)^2$$

- ∴ 4, 7, 8 is not a Pythagorean triplet.
- 2. The sides of some triangles are given below. Find out which ones are right-angled triangles?
- (i) 8,15,17

Solution:

8, 15, 17

$$(8)^2 = 64, (15)^2 = 225, (17)^2 = 289$$

$$64 + 225 = 289$$

$$\therefore (8)^2 + (15)^2 = (17)^2$$

∴ It is a right-angled triangle.

(ii) 11,12,15

Solution:

11,12,15

$$(11)^2 = 121, (12)^2 = 144, (15)^2 = 225$$

$$121 + 144 = 265 \neq 225$$

$$\therefore (11)^2 + (12)^2 \neq (15)^2$$

∴ It is not a right-angled triangle.

(iii) 11, 60, 61

Solution:

11, 60, 61

$$(11)^2 = 121$$
, $(60)^2 = 3600$, $(61)^2 = 3721$

$$121 + 3600 = 3721$$

$$\therefore (11)^2 + (60)^2 = (61)^2$$

∴ It is a right-angled triangle.

(iv) 1.5, 1.6, 1.7

Solution:

1.5, 1.6, 1.7

$$(1.5)^2 = 2.25$$
, $(1.6)^2 = 2.56$, $(1.7)^2 = 2.89$

$$2.25 + 2.56 = 4.81 \neq 2.89$$

$$\therefore (1.5)^2 + (1.6)^2 \neq (1.7)^2$$

∴ It is not a right-angled triangle.

(v) 40, 20, 30

Solution:

40, 20, 30

$$(40)^2 = 1600$$
, $(20)^2 = 400$, $(30)^2 = 900$

$$900 + 400 = 1300 \neq 1600$$

$$\therefore (30)^2 + (20)^2 \neq (40)^2$$

∴ It is not a right-angled triangle.
